The Gap between Unbounded Regular Operators
نویسنده
چکیده
We study and compare the gap and the Riesz topologies of the space of all unbounded regular operators on Hilbert C*-modules. We show that the space of all bounded adjointable operators on Hilbert C*-modules is an open dense subset of the space of all unbounded regular operators with respect to the gap topology. The restriction of the gap topology on the space of all bounded adjointable operators is equivalent with the topology which is generated by the usual operator norm. The space of regular selfadjoint Fredholm operators on Hilbert C*-modules over the C*-algebra of compact operators is path-connected with respect to the gap topology, however, the result may not be true for some Hilbert C*modules.
منابع مشابه
Some results about unbounded convergences in Banach lattices
Suppose E is a Banach lattice. A net in E is said to be unbounded absolute weak convergent ( uaw-convergent, for short) to provided that the net convergences to zero, weakly. In this note, we further investigate unbounded absolute weak convergence in E. We show that this convergence is stable under passing to and from ideals and sublattices. Compatible with un-convergenc, we show that ...
متن کامل8 Generalized Inverses and Polar Decomposition of Unbounded Regular Operators on Hilbert C ∗ - Modules
In this note we show that an unbounded regular operator t on Hilbert C∗modules over an arbitrary C∗ algebra A has polar decomposition if and only if the closures of the ranges of t and |t| are orthogonally complemented, if and only if the operators t and t∗ have unbounded regular generalized inverses. For a given C∗-algebra A any densely defined A-linear closed operator t between Hilbert C∗-mod...
متن کاملContinuity of the Polar Decomposition for Unbounded Operators on Hilbert C*-modules
For unbounded operators t, s between Hilbert C*-modules which admit the polar decompositions V|t|, W|s|, respectively, we obtain an explicit upper bound estimate for the gap between t and s in terms of the norm of the bounded operators V − W , C|t| − C|s| and C|t∗| − C|s∗|, where C|t| and C|s| are the Cayley transforms of |t| and |s|. The result are used to drive a criterion for continuity of t...
متن کاملWeighted composition operators between growth spaces on circular and strictly convex domain
Let $Omega_X$ be a bounded, circular and strictly convex domain of a Banach space $X$ and $mathcal{H}(Omega_X)$ denote the space of all holomorphic functions defined on $Omega_X$. The growth space $mathcal{A}^omega(Omega_X)$ is the space of all $finmathcal{H}(Omega_X)$ for which $$|f(x)|leqslant C omega(r_{Omega_X}(x)),quad xin Omega_X,$$ for some constant $C>0$, whenever $r_{Omega_X}$ is the M...
متن کاملComposition operators between growth spaces on circular and strictly convex domains in complex Banach spaces
Let $\Omega_X$ be a bounded, circular and strictly convex domain in a complex Banach space $X$, and $\mathcal{H}(\Omega_X)$ be the space of all holomorphic functions from $\Omega_X$ to $\mathbb{C}$. The growth space $\mathcal{A}^\nu(\Omega_X)$ consists of all $f\in\mathcal{H}(\Omega_X)$ such that $$|f(x)|\leqslant C \nu(r_{\Omega_X}(x)),\quad x\in \Omega_X,$$ for some constant $C>0$...
متن کامل